

Available online at www.sciencedirect.com

GEA3162 stimulates Ca²⁺ entry in neutrophils

Jih-Pyang Wang*

Department of Education and Research, Taichung Veterans General Hospital, Taichung 407, Taiwan, ROC Received 30 May 2002; received in revised form 8 November 2002; accepted 15 November 2002

Abstract

We showed that 5-amino-3-(3,4-dichlorophenyl)1,2,3,4-oxatriazolium (GEA3162), a lipophilic nitric oxide (NO)-releasing agent, induced Ca^{2+} entry into rat neutrophils in a concentration-dependent manner, whereas the guanylyl cyclase inhibitors, 6-anilino-5,8-quinolinequinone (LY83583) and 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), had no effect on GEA3162-induced response. The GEA3162-induced Ca^{2+} entry was not observed in a Ca^{2+} -free medium. GEA3162 did not potentiate but reduced the store-emptying activated Ca^{2+} entry caused by cyclopiazonic acid. Stimulation of cells with GEA3162 in the absence of extracellular Ca^{2+} followed by addition of cations showed that only Ca^{2+} but not Ba^{2+} and Sr^{2+} entry occurs. Store-operated Ca^{2+} entry was sensitive to La^{3+} and Ni^{2+} inhibition, whereas the GEA3162-induced Ca^{2+} entry was sensitive to La^{3+} but resistant to Ni^{2+} . cis-N-(2-Phenylcyclopentyl)azacyclotridec-1-en-2-amine (MDL-12,330A) and calyculin A diminished the Ca^{2+} entry activated by cyclopiazonic acid as well as by GEA3162. In contrast, 2-aminoethyldiphenyl borate (2-APB) diminished cyclopiazonic acid—but enhanced GEA3162-induced $[Ca^{2+}]_i$ change. Genistein effectively attenuated the cyclopiazonic acid—but slightly inhibited GEA3162-induced $[Ca^{2+}]_i$ change. Application of neomycin and high extracellular Ca^{2+} concentration did not induce $[Ca^{2+}]_i$ rise. These data suggest that GEA3162 induced Ca^{2+} entry and regulated Ca^{2+} signal, through direct protein thiol oxidation. The action of GEA3162 demonstrates characteristics that distinguish it from the store-operated mechanism in neutrophils and therefore is likely to represent an entirely distinct pathway. Extracellular Ca^{2+} -sensing receptor is not existing in neutrophils. Ca^{2+} sensing receptor is not existing in neutrophils.

Keywords: GEA3162; S-Nitrosylation; Cation entry; Ca²⁺, intracellular, free; Cyclopiazonic acid; Neutrophil

1. Introduction

In neutrophils, Ca2+ signals have been implicated in many cellular functions (Korchak et al., 1984; O'Flaherty et al., 1991). Receptor-induced cytosolic Ca²⁺ signals involve two closely coupled components: rapid and transient release of Ca²⁺ from internal stores, followed by slowly developing extracellular Ca²⁺ entry (Von Tscharner et al., 1986). It is conceivable that the initial Ca2+ spike is mediated by the phosphoinositide cascade through the activation of phospholipase C to generate the second messenger, inositol trisphosphate (IP₃), which interacts with the IP₃ receptor to release Ca²⁺ from the internal stores (Berridge and Irvine, 1989). However, the nature of the Ca²⁺ entry pathway and its regulation is far from clear. Receptor-enhanced entry of Ca²⁺ in nonexcitable cells is generally ascribed to a storeoperated mechanism (capacitative Ca²⁺ entry) in which the activation of the entry pathway is specifically dependent on

the emptying of agonist-sensitive internal Ca²⁺ stores. The resulting depletion of Ca²⁺ store serves as the primary trigger for a message, which is returned to the plasma membrane resulting in the slow activation of store-operated Ca²⁺ entry (Putney, 1990). This Ca²⁺ entry phase of Ca²⁺ signaling serves to mediate longer term cytosolic Ca2+ elevations and provides a means to replenish internal stores (Putney and Bird, 1993). The mechanism for coupling internal store depletion with Ca²⁺ entry is not yet clear. It may involve the release and/or generation of a diffusible signaling molecule within the cell that activates the plasma membrane channels responsible for Ca²⁺ entry (Randriamampita and Tsien, 1993; Graier et al., 1995). Alternatively, a more direct molecular coupling may occur between the stores and the plasma membrane channels (Somasundaram et al., 1995). Transient receptor potential proteins have been described, which display characteristics similar to storeoperated Ca²⁺ entry channels, as reviewed recently (Putney and McKay, 1999).

Although such store-operated entry of Ca²⁺ can be clearly demonstrated in a wide variety of different cells, it

^{*} Tel.: +886-4-2359-2525x4023; fax: +886-4-2359-2705. E-mail address: w1994@vghtc.vghtc.gov.tw (J.-P. Wang).

is far from certain that such mechanism is the only one involved in the increase in Ca²⁺ entry in nonexcitable cells. A nonstore-operated Ca²⁺ entry mechanism which involves protein kinase C has been reported in human platelets (Rosado and Sage, 2000). A phosphatidylinositol 3,4,5trisphosphate-sensitive Ca2+ entry that is independent of the filling state of internal Ca²⁺ stores was observed in FceRI-stimulated mast cells (Ching et al., 2001). In addition, arachidonic acid activates the nonstore-operated Ca2+ entry in smooth muscle cells (Broad et al., 1999). Studies have revealed that a number of important plasma membrane and intracellular channels for Ca²⁺ are regulated by nitric oxide (NO)-mediated thiol nitrosylation (Lipton et al., 1993; Campbell et al., 1996; Xu et al., 1998). Here, we show that 5-amino-3-(3,4-dichlorophenyl)1,2,3,4-oxatriazolium (GEA3162), a lipophilic NO-releasing agent (Kankaanranta et al., 1996), induced Ca²⁺ entry and regulated Ca²⁺ signal with characteristics distinct from that of the store-operated mechanism in rat neutrophils.

2. Materials and methods

2.1. Materials

Dextran T-500 was purchased from Amersham Pharmacia Biotech (Buckinghamshire, United Kingdom). Hanks' balanced salt solution was obtained from Gibco Life Technologies (Gaithersburg, MD, USA). Fluo-3 acetoxymethyl ester (fluo-3/AM) and fura-2/AM were purchased from Molecular Probes (Eugene, OR, USA). 5-Amino-3-(3,4dichlorophenyl)1,2,3,4-oxatriazolium (GEA3162) and cis-N-(2-phenylcyclopentyl)azacyclotridec-1-en-2-amine (MDL-12,330A) were obtained from Alexis (San Diego, CA, USA). Calyculin A and 2-aminoethyldiphenyl borate (2-APB) were obtained from Calbiochem-Novabiochem (San Diego, CA, USA). 6-Anilino-5,8-quinolinequinone (LY83583) was purchased from Research Biochemicals International (Natick, MA, USA). 1H-[1,2,4]Oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) was obtained from Biomol Research Laboratories (Plymouth Meeting, PA, USA). All other reagents and chemicals were purchased from Sigma (St. Louis, MO, USA). The final volume of dimethyl sulfoxide (DMSO) in the reaction mixture was $\leq 0.5\%$ (v/v).

2.2. Preparation of rat neutrophils

Neutrophils were isolated from Sprague—Dawley rats as described previously (Wang et al., 1995). Briefly, fresh whole blood was obtained from the abdominal aorta and immediately mixed with ethylenediamine tetraacetate. The neutrophils were purified by dextran sedimentation followed by centrifugation through Ficoll-Hypaque and hypotonic lysis of erythrocytes. Purified neutrophils of >95% viability were suspended in Hanks' balanced salt solution (HBSS)

containing 10 mM N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (pH 7.4) and 4 mM NaHCO₃, and kept in an ice bath before use.

2.3. Measurement of intracellular free Ca²⁺

Neutrophils $(5 \times 10^7 \text{ cells/ml})$ were loaded with 5 μ M fluo-3/AM for 45 min at 37 °C. After being washed, the cells were resuspended in HBSS to 5×10^6 cells/ml. Fluorescence was monitored with a Fluorescence spectrophotometer at 535 nm with excitation at 488 nm. $[\text{Ca}^{2+}]_i$ was calibrated from the Fluorescence intensity as follows: $[\text{Ca}^{2+}]_i = K_d \times [(F - F_{\min})/(F_{\max} - F)]$, where F is the observed Fluorescence intensity (Merritt et al., 1990). The values F_{\max} and F_{\min} were obtained at the end of experiments by the sequential addition of 0.33% Triton X-100 and 50 mM EGTA. The K_d was taken as 400 nM. In some experiments, data are expressed as means \pm S.D.

2.4. Measurement of cation permeability

Neutrophils $(5\times10^7~cells/ml)$ were loaded with 5 μ M fura-2/AM at 37 °C for 45 min. After being washed, the cells were resuspended in HBSS to $5\times10^6~cells/ml$ (Wang et al., 1995). Fura-2-loaded cells were stimulated in a Ca²⁺-free medium followed by addition of Ca²⁺, Ba²⁺ or Sr²⁺ to the medium. Fluorescence was monitored with a double-wavelength Fluorescence spectrophotometer (PTI, Deltascan 4000) at 510 nm with excitation at 340 and 380 nm in the ratio mode.

3. Results and discussion

3.1. S-Nitrosylation-mediated Ca²⁺ entry

Application of the lipophilic NO donor, GEA3162, revealed an increase in $[Ca^{2+}]_i$ in rat neutrophils in a concentration-dependent manner. Unlike the chemotactic peptide-induced strong and rapid response, the $[Ca^{2+}]_i$ change caused by GEA3162 was weak and preceded by a concentration-dependent lag (Fig. 1A). This GEA3162induced [Ca²⁺]_i change was abolished in a Ca²⁺-free medium, reflecting a Ca²⁺ entry mechanism rather than release from internal stores (Fig. 1B). Several studies have shown that NO donor-induced S-nitrosylation results in activation of Ca²⁺ entry, which is strikingly similar to entry of Ca2+ induced by cell-permeable alkylators (Broillet and Firestein, 1997; Favre et al., 1998; Xu et al., 1998). The observation that GEA3162 activated Ca2+ entry was prevented by the disulphide-reducing agent 2-mercaptoethnaol (data not shown) suggests the involvement of protein thiol oxidation. GEA3162 might selectively donate NO at the surface of the membrane in the vicinity of reactive thiols of the entry channel or an associated protein, as has been proposed in DDT₁MF-2 smooth muscle cells (Favre et al.,

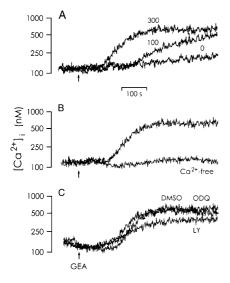


Fig. 1. GEA3162 stimulated $[{\rm Ca}^2^+]_i$ changes in rat neutrophils. (A) Concentration dependence of GEA3162 $(0-300~\mu{\rm M})$ stimulated (arrow) the increase in $[{\rm Ca}^{2^+}]_i$ in ${\rm Ca}^{2^+}(1~{\rm mM})$ -containing medium. (B) Stimulation of cells with 300 $\mu{\rm M}$ GEA3162 (arrow) in the presence or absence of external ${\rm Ca}^{2^+}$. (C) Cells were preincubated with 20 $\mu{\rm M}$ LY83583 (LY) or 20 $\mu{\rm M}$ ODQ for 3 min before stimulation with 300 $\mu{\rm M}$ GEA3162 (GEA, arrow) in a ${\rm Ca}^{2^+}$ -containing medium. Similar results were obtained from three independent experiments.

1998). It is conceivable that NO is a strong soluble guanylyl cyclase activator, and the NO donor activates soluble guanylyl cyclase in neutrophils (Feelisch and Noack, 1987). However, GEA3162 activated Ca²⁺ entry independent of guanylyl cyclase because no appreciable changes in [Ca²⁺]_i could be observed with the application of LY83583 and ODQ (403.3 \pm 32.1 nM for control vs. 355.1 \pm 34.2 and 412.6 \pm 31.5 nM, respectively, both P>0.05) (Fig. 1C), inhibitors of guanylyl cyclase (Garthwaite et al., 1995; Schmidt et al., 1985). This result is in line with the previous report in DDT₁MF-2 cells (Favre et al., 1998). In addition, our previous report indicated that cGMP does not play an important role in the regulation of $[Ca^{2+}]_i$ in rat neutrophils (Wang et al., 2001). Thus, GEA3162-induced $[Ca^{2+}]_i$ elevation is believed to reflect a Ca²⁺ entry mechanism, independent of guanylyl cyclase, activated through the direct S-nitrosylation of protein thiols that might produce conformational change governing the influx of extracellular Ca^{2+} .

3.2. Effect of store emptying on S-nitrosylation-induced Ca^{2+} entry

Previous research has revealed that the *S*-nitrosylation-dependent Ca²⁺ entry mechanism activated by GEA3162 is potentiated by store emptying in DDT₁MF-2 cells but not in human embryonic kidney (HEK) 293 cells (Ma et al., 1999). Since store-operated Ca²⁺ entry differs significantly between cells, it has been proposed that there is a family of distinct channel proteins and/or different association with regulatory proteins (Putney and Bird, 1993; Parekh and Penner, 1997).

In order to evaluate the influence of the store emptying on the effects of GEA3162, we studied the effect of cyclopiazonic acid on GEA3162-activated Ca²⁺ entry. Cyclopiazonic acid selectively inhibits the Ca²⁺ pump of internal stores (Seidler et al., 1989), allowing the stores to be emptied independently of receptor activation and thereby activating the store-operated Ca²⁺ entry mechanism. Under these conditions, emptying of internal Ca²⁺ stores with 1 or 5 μM cyclopiazonic acid did not enhance the GEA3162-induced Ca²⁺ influx (Fig. 2A, B). In contrast, treatment with GEA3162 reduced the cyclopiazonic acid-induced [Ca²⁺], change, suggesting a different entry mechanism.

3.3. Characteristics of cation permeability in S-nitrosylation

Store emptying stimulates entry of Ca²⁺, Ba²⁺, Sr²⁺ and Mn²⁺ into human neutrophils (Wenzel-Seifert et al., 1996). Removal followed by the readdition of 1 mM Ca²⁺ in cyclopiazonic acid treatment rat neutrophils caused a large and rapid Ca²⁺ entry representing the overshoot response for store-operated Ca²⁺ channel. Further removal of Ca²⁺ followed by the addition instead of Ba²⁺ resulted in Ba²⁺ entry, which, as for Sr2+, was also detectable by fura-2 ratiofluorimetry (Fig. 3A). The concentration dependence of externally applied Ca²⁺, Ba²⁺ or Sr²⁺ (each 0-3 mM) entry activated by store emptying was observed (data not shown). The cation permeability of store-operated entry mechanism followed the order $Ca^{2+}>Ba^{2+} \ge Sr^{2+}$, in accordance with the literature (Fasolato et al., 1994). Under the same conditions, upon readdition of external Ca²⁺ (1 mM) to the GEA3162-treated cells, a slow but prominent Ca²⁺ entry was observed. However, with externally applied Ba2+ or Sr2+, only a very small amount of Sr2+ entered (Fig. 3B). Up to 3 mM each of Ba²⁺ or Sr²⁺ did not result in any appreciable increase in cation entry (data not shown).

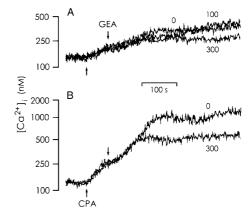


Fig. 2. Effect of cyclopiazonic acid on GEA3162-induced $[{\rm Ca}^2^+]_i$ changes in rat neutrophils. Cells were stimulated with (A) 1 $\mu{\rm M}$ or (B) 5 $\mu{\rm M}$ cyclopiazonic acid (CPA, first arrow) for 1 min in a ${\rm Ca}^2^+(1~{\rm mM})$ -containing medium before addition or without addition of GEA3162 (GEA, second arrow) into the medium. Similar results were obtained from three independent experiments.

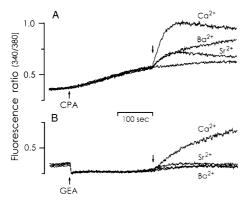


Fig. 3. Comparison of the entry of Ca^{2+} , Ba^{2+} and Sr^{2+} into rat neutrophils in response to cyclopiazonic acid and GEA3162. Fura-2-loaded cells were stimulated (first arrow) with (A) 10 μ M cyclopiazonic acid (CPA) or (B) 300 μ M GEA3162 (GEA) for 4 min in a Ca^{2+} -free medium before addition (second arrow) or without addition of 1 mM each of Ca^{2+} , Ba^{2+} or Sr^{2+} into the medium. The fluorescence changes were monitored by fura-2 ratio-fluorimetry. Similar results were obtained from three independent experiments

The results with $\mathrm{Ba}^{2\,+}$ and $\mathrm{Sr}^{2\,+}$ indicated a significant difference in the apparent selectivity for passage of cations activated by store emptying as opposed to GEA3162 stimulation in neutrophils.

Our results are in contradiction with a previous report that GEA3162-activated entry mechanism allowed passage of Ba²⁺, with one order of magnitude upper the rate of store-operated Ba²⁺ entry, and Sr²⁺ in DDT₁MF-2 cells (Ma et al., 1999). The discrepant results imply the characteristics of cation entry in response to GEA3162 differ significantly between DDT₁MF-2 cells and neutrophils. Mn²⁺ is not a substrate for the Ca²⁺ pump and hence a surrogate of Ca²⁺ influx. Activation of the store-operated entry mechanism induces an increased rate of Mn²⁺ influx (Fasolato et al., 1994). The Mn²⁺ influx experiment was not performed because GEA3162 (300 μM) alone greatly reduced the

Fluorescence intensity of fura-2 at 360/510 nm, obscuring the effect of Mn²⁺.

In other studies on Ca²⁺ entry, criteria for defining differences between putative entry mechanisms have rested on the effectiveness of La³⁺ and Ni²⁺, the specific Ca²⁺ channel blockers, in blocking passage of Ca²⁺. Varying concentrations of La³⁺ or Ni²⁺ were added either after store emptying or following GEA3162 addition. Analysis of the La³⁺ dependence of blocking Ca²⁺ entry revealed a significant difference between the two modes of activation. La³⁺ (0.03 mM) showed only slight inhibition of cyclopiazonic acid-activated Ca²⁺ entry, but almost eliminated the GEA3162-induced response (Fig. 4A). In contrast, Ni²⁺ (0.3 mM) greatly attenuated the Ca²⁺ entry in pool emptying, but had little effect on this response to *S*-nitrosylation (Fig. 4B). These results reaffirmed the difference between the two modes of Ca²⁺ entry.

3.4. Effects of Ca^{2+} signal blockers on S-nitrosylation- and store emptying-activated Ca^{2+} entry

2-Aminoethyldiphenyl borate (2-APB), the cell-permeable antagonist of IP₃ receptor (Maruyama et al., 1997), blocks receptor-induced Ca²⁺ release from internal stores and has been a useful tool in elucidating the coupling mechanism for store-operated cation entry. Pretreatment of neutrophils with 2-APB abolished the cyclopiazonic acidinduced [Ca²⁺]_i change, but enhanced rather than inhibited GEA3162-induced response (Fig. 5). The failure of inhibition of *S*-nitrosylation-activated Ca²⁺ entry by 2-APB is in agreement with the previous report in DDT₁MF-2 cells (Van Rossum et al., 2000), suggesting the independence of the IP₃ receptor mechanism. A recent report indicated that a non-capacitative Ca²⁺ entry caused by arachidonic acid was also unaffected by 2-APB (Luo et al., 2001). MDL-12,330A blocked the Ca²⁺ entry, independent of adenylyl cyclase,

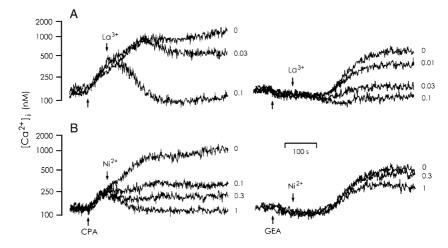


Fig. 4. Comparison of the effects of La^{3+} and Ni^{2+} on cyclopiazonic acid- and GEA3162-stimulated [Ca^{2+}]_i changes in rat neutrophils. Cells were stimulated (first arrow) with 5 μ M cyclopiazonic acid (CPA, left panel) or 300 μ M GEA3162 (GEA, right panel) for 1 min in a Ca^{2+} (1 mM)-containing medium before addition (second arrow) of indicated concentrations of (A) La^{3+} or (B) Ni^{2+} into the medium. Similar results were obtained from three independent experiments.

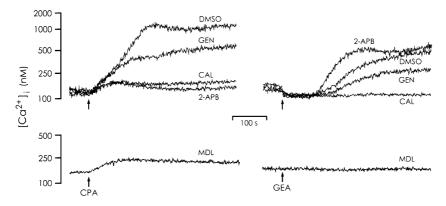


Fig. 5. Effects of 2-APB, calyculin A, genistein and MDL-12,330A on cyclopiazonic acid- and GEA3162-stimulated $[Ca^2^+]_i$ changes in rat neutrophils. Cells were preincubated with DMSO (as control), 100 μ M each of 2-APB or genistein (GEN) for 1 min, 0.1 μ M calyculin A (CAL) or 30 μ M MDL-12,330A (MDL) for 10 min before stimulation (first arrow) with 5 μ M cyclopiazonic acid (CPA, left panel) or 300 μ M GEA3162 (GEA, right panel) in a Ca²⁺(1 mM)-containing medium. Similar results were obtained from three independent experiments.

following store emptying in a number of different cell types (Van Rossum et al., 2000). Thus, the different mode of actions between the operation of store-operated and *S*-Nitrosylation is further strengthened by comparison of the actions of 2-APB. The results that MDL-12,330A prevented store-operated and *S*-nitrosylation-mediated Ca²⁺ entry in neutrophils (Fig. 5) are consistent with previous report in DDT₁MF-2 cells (Van Rossum et al., 2000).

The operation of store-operated Ca²⁺ entry is proposed to be mediated by a physical secretion-like mechanism involving close but reversible interactions between the internal stores and the plasma membrane (Patterson et al., 1999). Calyculin A, an inhibitor of protein phosphatases 1/2A, activates translocation of existing F-actin to the cell peripheral, which prevents store-operated Ca²⁺ entry activation via blockade of the association of internal stores with the plasma membrane (Patterson et al., 1999). Treatment with calyculin A diminished the cyclopiazonic acid-induced Ca²⁺ entry in human neutrophils (Wenzel-Seifert et al., 1996) as well as in rat neutrophils (Fig. 5). Calyculin A failure to inhibit GEA3162-induced response was observed in DDT₁MF-2 cells (Ma et al., 1999), but prevented the action of GEA3162 in neutrophils. It is plausible that the cortical actin filament network acts as a physical barrier to prevent Ca²⁺ entry in store-emptying operation as well as in S-nitrosylation-induced process.

Protein tyrosine phosphorylation has been reported to play a role in regulating $[{\rm Ca}^{2+}]_i$ (Jayaraman et al., 1996; Rhee and Bae, 1997). Genistein, a general tyrosine kinase inhibitor, inhibits the plateau phase of the chemotactic peptide- and ${\rm Ca}^{2+}$ pump inhibitor-induced ${\rm Ca}^{2+}$ response, while leaving the transient phase intact in human neutrophils (Waddell et al., 1995). Loss of the plateau phase by genistein was due to blockage of ${\rm Ca}^{2+}$ entry. Pretreatment of cells with genistein for 1 min reduced the cyclopiazonic acid-induced $[{\rm Ca}^{2+}]_i$ change. Under the same conditions, genistein slightly, however significantly, affected the GEA3162-induced response (355.7 \pm 34.2 nM for control vs. 265.2 \pm 31.3 nM, P<0.05) (Fig. 5). Thus the tyrosine

phosphorylation probably plays a role in *S*-nitrosylation-induced Ca²⁺ entry. Prolonging the preincubation time with genistein for 30 min did not enhanced its inhibitory activity $(372.5 \pm 29.8 \text{ nM})$ for control vs. $254.6 \pm 28.7 \text{ nM}$). The mechanism of genistein action besides the inhibition of tyrosine phosphorylation has not been excluded.

3.5. Examination of the Ca²⁺-sensing receptor

Extracellular Ca²⁺-sensing receptor plays a key role in mineral ion homeostasis by sensing small perturbations in the level of [Ca²⁺]₀ and modulating the functions of parathyroid and kidney (Brown et al., 1993; Zhang et al., 2001). Recently reports demonstrated the expression of Ca²⁺-sensing receptor in bone marrow derived cells of

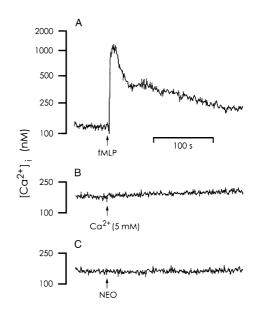


Fig. 6. Effects of neomycin and high extracellular Ca^{2+} concentration on $[Ca^{2+}]_i$ in rat neutrophils. Cells were treated (arrow) with (A) 0.3 μ M fMLP, (B) 4 mM Ca^{2+} or (C) 2 mM neomycin (NEO) in a $Ca^{2+}(1 \text{ mM})$ -containing medium. Similar results were obtained from three independent experiments.

the macrophage/monocyte lineage and in human peripheral blood monocytes (Yamaguchi et al., 1998). The Ca²⁺sensing receptor, which forms disulfide-linked dimers, is known to bind its agonists and produce a G proteindependent activation of phospholipase C, leading to an elevation in the cellular levels of IP₃, thereby releasing Ca²⁺ from its internal stores and producing increases in [Ca²⁺], (Godwin and Soltoff, 1997). The possibility of direct activation of Ca²⁺-sensing receptor by S-nitrosylation, bypassing the cellular signal process, was examined. In rat neutrophils, the normal receptor-induced [Ca²⁺]_i changes caused by formyl-Met-Leu-Phe (fMLP) were observed (Fig. 6A). The inability of neomycin and high [Ca²⁺]₀, both Ca²⁺-sensing receptor agonists (Brown et al., 1993), to elicit increases in $[Ca^{2+}]_i$ (Fig. 6B, C) argue against the existence of Ca²⁺-sensing receptor in neutro-

In conclusion, the NO-releasing agent GEA3162 activated ${\rm Ca^{2}}^{+}$ entry and regulated ${\rm Ca^{2}}^{+}$ signal in rat neutrophils involving protein thiol oxidation. The present results suggested a fundamental difference in the regulation of cellular ${\rm Ca^{2}}^{+}$ signal between the store-emptying operation and the *S*-nitrosylation-induced process.

Acknowledgements

This work was supported in part by grants from the National Science Council (NSC-89-2320-B-075A-009) and Taichung Veterans General Hospital (TCVGH-907303C), Taiwan, Republic of China.

References

- Berridge, M.J., Irvine, R.F., 1989. Inositol phosphates and cell signaling. Nature 341, 197–205.
- Broad, L.M., Cannon, T.R., Taylor, C.W., 1999. A non-capacitative pathway activated by arachidonic acid is the major Ca²⁺ entry mechanism in rat A7r5 smooth muscle cells stimulated with low concentration of vasopressin. J. Physiol. 517, 121–134.
- Broillet, M.C., Firestein, S., 1997. Beta subunits of the olfactory cyclic nucleotide-gated channel from a nitric oxide activated Ca²⁺ channel. Neuron 18, 951–958.
- Brown, E.M., Gamba, G., Riccardi, D., Lombardi, M., Butters, R., Kifor, O., Sun, A., Hediger, M.A., Lytton, J., Hebert, S.C., 1993. Cloning and characterization of an extracellular Ca²⁺-sensing receptor from bovine parathyroid. Nature 366, 575–580.
- Campbell, D.L., Stamler, J.S., Strauss, H.C., 1996. Redox modulation of Ltype calcium channels in ferret ventricular myocytes: dual mechanism regulation by nitric oxide and S-nitrosothiols. J. Gen. Physiol. 108, 277–293.
- Ching, T.T., Su, A.L., Johnson, A.J., Chen, C.S., 2001. Phosphoinositide 3-kinase facilitates antigen-stimulated Ca²⁺ influx in RBL-2H3 mast cells via a phosphatidylinositol 3,4,5-trisphosphate-sensitive Ca²⁺ entry mechanism. J. Biol. Chem. 276, 14814–14820.
- Fasolato, C., Innocenti, B., Pozzan, T., 1994. Receptor-activated Ca²⁺ influx: how many mechanisms for how many channels? Trends Pharmacol. Sci. 15, 77–83.
- Favre, C.J., Ufret-Vincenty, C.A., Stone, M.R., Ma, H.T., Gill, D.L., 1998.

- ${\rm Ca}^{2+}$ pool emptying stimulates ${\rm Ca}^{2+}$ entry activated by *S*-nitrosylation. J. Biol. Chem. 273, 30855–30858.
- Feelisch, M., Noack, E.A., 1987. Correlation between nitric oxide formation during degradation of organic nitrates and activation of guanylate cyclase. Eur. J. Pharmacol. 139, 19–30.
- Garthwaite, J., Southam, E., Boulton, C.L., Nielsen, E.B., Schmidt, K., Mayer, B., 1995. Potent and selective inhibition of nitric oxide-sensitive guanylyl cyclase by 1*H*-[1,2,4]oxadiazolo[4,3-*a*]quinoxalin-1-one. Mol. Pharmacol. 48, 184–188.
- Godwin, S.L., Soltoff, S.P., 1997. Extracellular calcium and platelet-derived growth factor promote receptor-mediated chemotaxis in osteo-blasts through different signaling pathways. J. Biol. Chem. 272, 11307-11312.
- Graier, W.F., Simecek, S., Sturek, M., 1995. Cytochrome *P*450 mono-oxygenase-regulated signalling of Ca²⁺ entry in human and bovine endothelial cells. J. Physiol. 482, 259–274.
- Jayaraman, T., Ondrias, K., Ondriasova, E., Marks, A.R., 1996. Regulation of the inositol 1,4,5-trisphosphate receptor by tyrosine phosphorylation. Science 272, 1492–1494.
- Kankaanranta, H., Rydell, E., Petersson, A.S., Holm, P., Moilanen, E., Corell, T., Karup, G., Vuorinen, P., Pedersen, S.B., Wennmalm, A., Metsa Ketela, T., 1996. Nitric oxide-donating properties of mesoionic 3-aryl substituted oxatriazole-5-imine derivatives. Br. J. Pharmacol. 117, 401–406.
- Korchak, H.M., Wilkenfeld, C., Rich, A.M., Radin, A.R., Vienne, K., Rutherfold, L.E., 1984. Stimulus response coupling in the human neutrophils: differential requirements for receptor occupancy in neutrophil responses to a chemoattractant. J. Biol. Chem. 259, 7439–7445.
- Lipton, S.A., Choi, Y.B., Pan, Z.H., Lei, S.Z., Chen, H.S., Sucher, N.J., Loscalzo, J., Singel, D.J., Stamler, J.S., 1993. A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds. Nature 364, 626–632.
- Luo, D., Broad, L.M., Bird, G.S., Putney, J.W., 2001. Signaling pathways underlying muscarinic receptor-induced $[{\rm Ca}^{2}^{+}]_{i}$ oscillations in HEK293 cells. J. Biol. Chem. 276, 5613–5621.
- Ma, H.T., Favre, C.J., Patterson, R.L., Stone, M.R., Gill, D.L., 1999. Ca²⁺ entry activated by *S*-nitrosylation: relationship to store-operated Ca²⁺ entry. J. Biol. Chem. 274, 35318–35324.
- Maruyama, T., Kanaji, T., Nakade, S., Kanno, T., Mikoshiba, K., 1997.
 2APB, 2-aminoethoxydiphenyl borate, a membrane-penetrable modulator of Ins(1,4,5)P₃-induced Ca²⁺ release. J. Biochem. (Tokyo) 122, 498–505
- Merritt, J.E., McCarthy, S.A., Davies, M.P., Moores, K.E., 1990. Use of fluo-3 to measure cytosolic Ca²⁺ in platelets and neutrophils: loading cells with the dye, calibration of traces, measurement in the presence of plasma, and buffering of cytosolic Ca²⁺. Biochem. J. 269, 513–519.
- O'Flaherty, J.T., Rossi, A.G., Jacobson, D.P., Redman, J.F., 1991. Roles of Ca²⁺ in human neutrophil responses to receptor agonists. Biochem. J. 277, 705–711.
- Parekh, A.B., Penner, R., 1997. Store depletion and calcium influx. Physiol. Rev. 77, 901–930.
- Patterson, R.L., Van Rossum, D.B., Gill, D.L., 1999. Store-operated Ca²⁺ entry: evidence for a secretion-like coupling model. Cell 98, 487–499.
- Putney, J.W., 1990. Capacitative calcium entry revisited. Cell Calcium 11, 611-624.
- Putney, J.W., Bird, G.S., 1993. The signal for capacitative calcium entry. Cell 75, 199–201.
- Putney, J.W., McKay, R.R., 1999. Capacitative calcium entry channels. BioEssays 21, 38–46.
- Randriamampita, C., Tsien, R.Y., 1993. Emptying of intracellular Ca²⁺ stores releases a novel small messenger that stimulates Ca²⁺ influx. Nature 364, 809–814.
- Rhee, S.G., Bae, Y.S., 1997. Regulation of phosphoinositide-specific phospholipase C isozymes. J. Biol. Chem. 272, 15045–15048.
- Rosado, J.A., Sage, S.O., 2000. Protein kinase C activates non-capacitative calcium entry in human platelet. J. Physiol. 529, 159–169.
- Schmidt, M.J., Sawyer, B.D., Truex, L.L., Marshall, W.S., Fleisch, J.H.,

- 1985. LY83583: an agent that lowers intracellular levels of cyclic guanosine 3',5'-monophosphate. J. Pharmacol. Exp. Ther. 232, 764–769.
- Seidler, N.W., Jona, I., Vegh, M., Martonosi, A., 1989. Cyclopiazonic acid is a specific inhibitor of the Ca²⁺-ATPase of sarcoplasmic reticulum. J. Biol. Chem. 264, 17816-17823.
- Somasundaram, B., Normal, J.C., Mahaut-Smith, M.P., 1995. Primaquine, an inhibitor of vesicular transport, blocks the calcium-release-activated current in rat megakaryocytes. Biochem. J. 309, 725–729.
- Van Rossum, D.B., Patterson, R.L., Ma, H.T., Gill, D.L., 2000. Ca²⁺ entry mediated by store depletion, S-nitrosylation, and TRP3 channels: comparison of coupling and function. J. Biol. Chem. 275, 28562–28568.
- Von Tscharner, V., Prod'hom, B., Baggiolini, M., Reuter, H., 1986. Ion channels in human neutrophils activated by a rise in free cytosolic calcium concentration. Nature 324, 369–372.
- Waddell, T.K., Fialkow, L., Chan, C.K., Kishimoto, T.K., Downey, G.P., 1995. Signaling functions of L-selectin: enhancement of tyrosine phosphorylation and activation of MAP kinase. J. Biol. Chem. 270, 15403–15411.
- Wang, J.P., Raung, S.L., Kuo, Y.H., Teng, C.M., 1995. Daphnoretin-in-duced respiratory burst in rat neutrophils is, probably, mainly through protein kinase C activation. Eur. J. Pharmacol. 288, 341–348.
- Wang, J.P., Chang, L.C., Huang, L.J., Kuo, S.C., 2001. Inhibition of ex-

- tracellular Ca²⁺ entry by YC-1, an activator of soluble guanylyl cyclase, through a cyclic GMP-independent pathway in rat neutrophils. Biochem. Pharmacol. 62, 679–684.
- Wenzel-Seifert, K., Krautwurst, D., Musgrave, I., Seifert, R., 1996. Thapsigargin activates univalent- and bivalent-cation entry in human neutrophils by an SK&F 96365- and Gd³⁺-sensitive pathway and is a partial secretagogue: involvement of pertussis-toxin-sensitive G-proteins and protein phosphatases 1/2A and 2B in the signal-transduction pathway. Biochem. J. 314, 679–686.
- Xu, L., Eu, J.P., Meissner, G., Stamler, J.S., 1998. Activation of the cardiac calcium release channel (ryanodine receptor) by poly-S-nitrosylation. Science 279, 234–237.
- Yamaguchi, T., Olozak, I., Chattopadhyay, N., Butters, R.R., Kifor, O., Scadden, D.T., Brown, E.M., 1998. Expression of extracellular calcium (Ca₀²)-sensing receptor in human peripheral blood monocytes. Biochem. Biophys. Res. Commun. 246, 501–508.
- Zhang, Z., Tang, J., Tikunova, S., Johnson, J.D., Chen, Z., Qin, N., Dietrich, A., Stefani, E., Birnbaumer, L., Zhu, M.X., 2001. Activation of Trp3 by inositol 1,4,5-trisphosphate receptors through displacement of inhibitory calmodulin from a common binding domain. Proc. Natl. Acad. Sci. U. S. A. 98, 3168–3173.